Pascal’s Triangle II
Description
Given an index k, return the kth row of the Pascal’s triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
Tags: Array
思路0
题意是指定输出帕斯卡尔三角形的某一行,模拟即可,优化后的代码如下所示。
java:
class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> res = new ArrayList<>();
for (int i = 0; i <= rowIndex; ++i) {
res.add(1);
for (int j = i - 1; j > 0; --j) {
res.set(j, res.get(j - 1) + res.get(j));
}
}
return res;
}
}
思路1
题目提示我们可以思考一下时间复杂度为O(n)的算法。仔细观察每一行数字即可找出规律。 kotlin(184ms/66.67%):
class Solution {
fun getRow(rowIndex: Int): List<Int> {
val res = Array(rowIndex + 1, { 1 })
for (i in 1 until rowIndex + 1) {
if (i > (rowIndex + 1) / 2) {
res[i] = res[rowIndex - i]
continue
}
res[i] = ((res[i - 1]) * (rowIndex - i + 1).toLong() / i).toInt()
}
return res.asList()
}
}
JavaScript:
var getRow = function(rowIndex) {
var rowArr = function(numRows) {
let arr = []
for(var i = 1; i <= numRows; i++) {
if(i === 1) {
arr.push([1])
continue
}
if(i === 2) {
arr.push([1, 1])
continue
}
let innerArr = [1]
for(var j = 2; j < i; j++) {
innerArr.push(arr[i-2][j-2] + arr[i-2][j-1])
}
innerArr.push(1)
arr.push(innerArr)
}
return arr
}
return rowArr(rowIndex + 1)[rowIndex]
};
结语
如果你同我们一样热爱数据结构、算法、LeetCode,可以关注我们 GitHub 上的 LeetCode 题解:LeetCode-Solution